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INTRODUCTION

With the continuing commitment by NASA's CELSS (Controlled

Ecological Life Support System) Program to develop and evaluate a

bioregenerative life support system, a need arose to construct a

large test module for studying plant growth in an atmospherically

sealed system. Construction of such a module, the Biomass

Production Chamber or BPC, began at Kennedy Space Center, FL in

the spring of 1985. Although heavy construction relating to the

chamber air handling system, electric lighting, and plant growing

racks was completed by the spring of 1987, system upgrades and

modifications of both the physical components and computer con-

trol software have continued to the present. Over a four-year

period, five crops of wheat have been grown.

This report summarizes the chamber's physical system evolu-

tion and gives a brief summary of the biological (crop) test

results for the past four years. Methods and procedures for the

biological tests and more detailed discussions of yields are

presented near the beginning of the RESULTS AND DISCUSSION sec-

tion (see PHASE II section below). In depth discussions of the

chamber's current and proposed capabilities can be found in

Prince et al. (1987) and Sager et al. (1988), and a detailed

report of biological test results is currently in draft as a

separate report (Corey et al. unpublished).

The Biomass Production Chamber at Kennedy Space Center

provides the first closed biomass production facility for NASA's

CELSS program. Because of the visibility of the project, it was

used as soon as possible. The ongoing instrumentation and cul-



tural augmentation resulted in all of these tests being in-

fluenced in some way with experimental disturbances such as open-

ing of the doors, lighting of the plants during dark cycles, and

cutting short or extending the growing cycles. Work schedules

also influenced to some extent the choice of day/night cycles,

growing days, and the amount of closure that could be maintained.

By far the most frequent disturbances related to equipment and

sensor failures. As pointed out in Table i, many of the control

equipment and sensors, and chamber seals were not in place during

early phases of testing. In addition, calibration of sensors of-

ten had to be performed during biological tests. Changes con-

tinue to be made in the control system program and monitoring

sensors and techniques.

How much any one or all of a number of these uncontrollable

events affected plant growth cannot be determined. Certainly,

chamber environmental control capabilities improved from Phase I

to Phase V. Mechanical failures received priority and, unfor-

tunately, not as many resources were available for improving cul-

ture practice for the crops.

This report describes the progression of chamber development

from January 1985 to November 1989 (Table 1). For the sake of

simplicity, the developmental time line has been divided into

five phases to coincide with the biological tests which are

listed separately in Table 2.
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RESULTS AND DISCUSSION

PHASE I (Jan 1985 - Aug 1987)

Physical System

During Phase I, light construction activities of the chamber

continued and only the upper portion (two shelves) of the chamber

was available for growing plants. Carbon dioxide enrichment and

control were not available and no capabilities were in place to

monitor trace contaminants (e.g. gaseous hydrocarbons); conse-

quently, the chamber was operated in an open mode throughout

testing (i.e. fresh air exchange was provided). Full temperature

control and dehumidification capabilities were in place, but no

supplementary humidification could be provided. Lamp dimming

capabilites (using the "Wide-Lite" high pressure sodium ballasts)

were also in place but had not yet been tested. Temporary

nutrient solution reservoirs were positioned outside and adjacent

to the lower chamber door. Solution pH and electrical conduc-

tivity (nutrient replenishment) were controlled manually.

Bioloaical Test (Dec 1986 - April 1987)

The initial biological test in the BPC was undertaken

primarily as a systems operation check. Consequently, complete

growth data were not kept and harvest data were not considered

reliable. On the basis of studies conducted at Utah State

University, 'Yecora Rojo' wheat (_ aestivum L.) was chosen

for the test (Bugbee and Salisbury, 1988; Salisbury and Bugbee,

1988). Seeds were sown at a rate of 800 m -2 (200 per 0.25 m 2

tray) on to specially designed tray inserts to support the ger-

minating plants about 5 cm above a continuous flowing nutrient
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film (Prince and Knott, 1989). Translucent white acrylic covers

were placed over the trays to maintain high humidity during ger-

mination. Each of the two shelves in the upper portion of the

chamber could support 16 trays, for a total of 32 trays (Prince

et al., 1987). Two trays were sequentially planted at 4-day in-

tervals to set up a repetitive plant/harvest cycle. Qualitative

observations showed that wheat plants could be germinated and

grown to full maturity in approximately 65 to 75 days with a

single, replenished nutrient solution. In addition, shoot

heights could be confined to the available 60 cm of vertical

growing dimension between the culture trays and lamp barriers.

PHASE II (Aug 1987 - Aug 1988)

Physical System

As with Phase I, Phase II testing was conducted only in the

upper portion of the chamber using the levels (shelves) 1 and 2

(Table 1). In addition to complete temperature and dehumifica-

tion control, CO 2 concentrations could be monitored and control-

led using infrared gas analyzers and the main programable logic

controller (PLC) (Sager et al., 1988). With the addition of CO 2

control, the doors could be kept closed as much as possible.

During periods of closure, leakage rate from the chamber (as

determined by CO 2 decay rate tests) ranged from 20 to 40% of the

total volume per day, or approximately 1 to 2% per hour (Table

1). Tests conducted by adding either helium or halon gas to the

chamber showed the main leakage points to be around the two cham-

ber doors and the fan shafts for both the upper and lower air

handling systems. For Phase II testing, nutrient solutions were
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recirculated from large (300-liter) PVC reservoirs permanently

mounted outside the chamber on the ground floor. Nutrient solu-

tion pH was controlled to between 5.8 and 6.2 by adding dilute

nitric acid with portable, automatic controllers placed inside

the chamber. All components of the nutrient delivery system were

sealed and all air spaces vented back to the chamber.

_oloaical Test (May 1988 - Aug 1988)

Growina procedures. The second planting again used 'Yecora

Rojo' wheat sown at 1600 seeds per m -2. In contrast to the pre-

vious test, all 16 trays of level 2 (the lower of the two

shelves) were planted at one time. Fifteen days later, all 16

trays of level 1 were planted. A 24-hr photoperiod (i.e. con-

tinuous light) was maintained with full lamp intensity throughout

the entire growth cycle, providing an average photosynthetic

photon flux (PPF) of 660 umol m -2 s-1, or 57 mol m -2 day -1. Air

temperature and relative humidity were held constant at 23°C and

65%, respectively, while the CO 2 concentration was maintained at

1000 ppm (Table 1). For all biological tests (except where

noted), a complete nutrient solution roughly similar to a 1/2

strength Hoagland solution was used (Marschner, 1986). Modifica-

tions of the solution for wheat studies were based on previous

tests conducted at KSC (Mackowiak et al., 1990) and from informa-

tion reported in the literature (Bugbee and Salisbury, 1988;

Salisbury and Bugbee, 1988). In all cases, nitrogen was supplied

only as nitrate salts and except for Phase I, iron was provided

as an EDTA-chelate (Mackowiak et al., 1990).
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Harvest results. Trays from level 2 were harvested sequen-

tially at 68, 74, 80, and 86 days after planting (four trays per

harvest; Table 2). Trays from level 1 were harvested at 68, 70,

72, and 73 days after planting. (Level 1 harvests were advanced

to accommodate scheduled physical modifications to the chamber).

A total of 23.07 kg of plant biomass was produced from the dif-

ferent harvests with 9.25 kg of that total being seed (harvest

index of 40%). Assuming approximately 8 m 2 of growing area (32

0.25-m 2 trays), and an average cycle of 74 days, then crop growth

rate would equal 39.0 g m -2 day -1 for total biomass and 15.6 g

m -2 day -I for seed. The four best trays from the study (two har-

vested at 72 days and two at 74 days) averaged 908 g total

biomass and 391 g of seed for a harvest index of 43%. Thus the

best crop growth rates achieved (in this case using 72 days)

equaled 50.4 g m -2 day -I for total biomass and 21.7 g m -2 day -1

for seed.

Proximate nutritional analyses (conducted by Nutrition In-

ternational, Inc., East Brunswick, NJ) of the harvested tissue

showed that dried seed averaged 18.9% protein, 3.2% fat, 72.9%

carbohydrate, and 2.5% crude fiber, with a calculated nutritional

energy content of 3.96 kcal g-l. Straw tissue (leaves and stems)

averaged 14.4% protein, 2.5% fat, 39.5% carbohydrate, and 27.7%

crude fiber.

Yields and seed set from Phase II testing were the best of

any tests yet conducted in the BPC (Table 2). A comparison of

total biomass from the trays harvested with measured wheat yields

under optimal conditions (Bugbee and Salisbury, 1988; their Fig.

8) for a similar irradiance shows that the BPC yields fell about
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40% below yields under more optimal conditions. A comparison of

the best trays, however, shows only 20% below optimal yields.

This suggests that near optimal yields with wheat should be

achievable on a large scale with moderate atmospheric closure.

Air temperatures and CO 2 concentrations for the Phase II test

were within reported optimal ranges (Salisbury and Bugbee, 1988);

thus the less than optimal yield (for 51.5 mol m -2 day -I PPF)

could have been related to limitations in the root zone environ-

ment. These might include mild deficiencies or imbalances in the

nutrient solution, possible nutrient solution contaminants,

root-zone pathogens, or differences in cultural practices affect-

ing water and mineral uptake by the plants. To date, BPC studies

have utilized nutrient film technique (Graves, 1983), while the

highest yields for wheat have been reported from systems using a

rapid-flowing deep solution culture (Bugbee and Salisbury, 1988,

1989). This latter approach may provide a more optimal root en-

vironment, particularly under conditions favoring rapid growth,

e.g. high irradiance (Bugbee and Salisbury, 1989; Chung et al.,

1989).

Throughout all testing in the BPC, nutrient levels in solu-

tions were analyzed on a weekly or biweekly basis. In addition,

solution microflora (bacteria and fungi) counts were conducted at

regular intervals (Table 2), but no specific analyses or assays

were conducted for plant pathogens. During Phase IV and V, plant

tissue samples also were taken at weekly intervals throughout

growth and sent to Dr. Wade Berry of UCLA for elemental analysis

(Table 2).



Environmental measurements. At weekly intervals throughout

growth, extensive data were gathered on irradiance (PPF), air

velocity, and plant canopy (infrared) temperature. Results

showed that PPF varied significantly depending on tray position;

for example, PPF levels over end trays were typically 25 to 35%

lower than centrally located trays. This in part may explain the

large variation in yield between trays (Table 2). In addition,

PPF varied from the front (inner edge of the circular tray ar-

rangement; see Prince et al., 1987) to the back (outside edge) of

individual trays, and these differences steepened as plant shoots

grew closer to the lamps. Air velocities as measured with a hot

wire anemometer typically ranged from 0.2 to 1.2 m s-1, while in-

frared temperatures of plant shoots typically stayed within ± 1°C

of the surrounding air temperature. These findings suggest air

movement within the chamber was adequate to provide good mixing

(Krizek, 1978). Whether the higher air velocities may be impos-

ing some desiccation or mechanical stresses will require further

study (Mitchell et al., 1975). Spot samples of the chamber at-

mosphere for ozone showed the chamber air did not differ sig-

nificantly from air outside the chamber, with levels ranging from

40 to 60 ppb (J. Drese, unpublished).

Because the chamber was reasonably well sealed (20-40_

leakage per day) and temperature and relative humidity were held

constant throughout growth (23°C and 65%), water condensed from

the air handling heat exchangers closely represented transpira-

tion from the wheat stand. As shown in Table 2, 3615 liters of

water were condensed from the chamber atmosphere, or about 6.1

liters m -2 day -I over the average 74-day growth cycle (Table 2).



In comparison, a total of 3914 liters of water was added to the

nutrient solution systems. The slightly greater volume of added

water likely reflects losses from several plumbing leaks during

the test. Throughout growth, a total of 1868 ml of concentrated

nitric acid (15.7 M) was required to maintain pH in the two

nutrient delivery systems, or 3.1 ml of acid m -2 day -1. It is

important to note that nitrate-nitrogen (usually 7.5 mM) was used

for the nutrient solution in all the studies reported, thus pH

control always required addition of acid (Marschner, 1986).

PHASE III (Aug 1988 - Jan 1989)

Physical System

System components and capabilities remained relatively un-

changed from Phase II with the exception of completion of com-

puter controls for the lower chamber nutrient delivery systems

(levels 3 and 4) and the degree of atmospheric closure for the

entire chamber. The original rubber gaskets sealing both doors

to the chamber were replaced with pneumatic (inflatable) gaskets

to reduce leakage. In addition, insulation was stripped from all

the air handling system ducts to coat all the flexible connecting

sleeves with a silicone (RTV) sealant. This included 64, 20-cm

diameter penetrations into the main chamber, 16, 41-cm main duct

connections at the back of the chamber, 4, 56-cm connections to a

delivery plenum after the blowers, 4, 56-cm connections on the

main air return lines and various sample ports and access panels.

In addition, access doors to the coarse and HEPA filter housings

for both air handlings systems were totally sealed with the RTV

compound. Carbon dioxide (C02) concentration decay tests after



sealing the air handling system showed that leakage rates were

reduced to about i0 to 20% of the volume per day, or just

slightly less than 1% per hour.

Lamp dimming tests were conducted to monitor changes in to-

tal photon flux and shifts in spectral quality as a function of

power to the lamps. Results showed near maximum output from the

lamps could be sustained from 100% down to 70% power, but below

about 60% power, lamp output dropped sharply. At a dimmed set-

ting of 30% (the lowest level for dimming), lamp output was only

10% of maximum. In addition to the drop in total irradiance,

lamp spectral quality changed gradually with dimming: At the

maximum dimmed level (30% power), most of the output in the

photosynthetically active band was restricted to a peak near 589

nm, with a smaller peak near 570 nm (as measured with a LI-COR

Li-1800 spectroradiometer). Another peak near 819 nm in the

farted region also persisted at maximum dimming. Thus the

spectral output at the lowest setting was somewhat similar to

that of a low pressure sodium lamp (Sager et al., 1982) and basi-

cally agrees with findings reported by Bingham and Coyne (1979).

The tests with the BPC dimming system also showed that the eight

lamp banks (as controlled by the computer) and the individual

lamps and ballasts showed a high degree of variability in their

dimming response.

Biolouical Test (Nov 1988 - Jan 1989)

Wheat again was planted for the third phase test, but this

time all four growing levels and nutrient delivery systems were

used. This was the first test of the catchment, or sump tank and
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volume modulating controls needed for the level 4 nutrient

delivery system (Prince et al., 1987). A total of 44 of the pos-

sible 64 tray positions were planted for the test (ii trays per

growing level). Tray positions were randomly assigned using a

balanced incomplete block design (Sokal and Rohlf, 1981) for a

comparison of position effects within the chamber. Nutrient

solution pH and conductivity were controlled manually each day.

Because of facility scheduling, the crop was not carried to full

maturity and seed yield data were not collected (Table 2).

In contrast to the previous crop tests with continuous

lighting, a 20/04 (L/D) photoperiod was used with a matching 20 °

C/16°C thermoperiod. As before, CO 2 level was controlled to 1000

ppm by injecting a small amount of pure CO 2 during the light

cycle (to compensate for photosynthetic uptake by the plants).

However, with a daily dark cycle and the chamber being more

tightly sealed than in the past, CO 2 tended to rise from plant

respiration during the dark when photosynthesis was not active.

For the first 25 days of the study, build-up of CO 2 in the dark

cycle was controlled by injecting compressed C02-free "breathing

air" (approximately 79% N2 and 21% 02) to maintain the 1000 ppm

set point. At 25 days after planting, the breathing air supply

temporarily ran out resulting in a linear increase of CO 2 during

the dark period. At this point, it was decided to abandon fur-

ther attempts to suppress CO 2 increase during the dark cycle and

monitor the nightly increase and subsequent drawdown back to 1000

ppm each day when the lights were turned on. This was the first

effective demonstration of the BPC as a closed gas exchange sys-

tem to track plant stand photosynthesis and respiration (Coombs
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et al., 1985). As with Phase If, spot samples for ozone showed

no substantial difference between atmospheres inside and outside

the chamber (J. Drese, unpublished).

PHASE IV (Jan 1989 - May 1989)

Physical System

Supplementary humidification capabilities were added to the

chamber during Phase IV. This consisted of a nozzle on a

deionized water line placed inside the main ducts of the upper

and lower air handling systems. When humidification was required

(typically only during the first two weeks of growth), the con-

trol computer would open a solenoid valve in the water line to

allow a water spray into the air stream. In an attempt to

provide a better gas seal around the fan shafts, a deionized

water line was plumbed to each blower unit permitting a small

amount water to drop onto the shaft just adjacent to the seal and

bearings on the fan housing (about one drop every 5 to 20

seconds). This provided a continuous water seal in the bearings

and reduced leakage rates from the chamber to about 5-10% per

day.

Computer (PLC) control statements and hardware for nutrient

solution pH and electrical conductivity were added and tested

(Prince et al., 1987). Initial design plans for conductivity

control involved four separate stock solution reservoirs with a

fifth reservoir containing deionized water. The four stock

reservoirs would allow concentrated solutions of different salts

to be kept with minimal risk of precipitation. Upon demand, a

portion of each stock solution would be added to one of the main
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nutrient solution systems, with deionized water added to rinse

the plumbing between each stock. However, to simplify mineral

budget keeping, it was decided to a use single, complete stock

solution (i.e. containing all the essential nutrients) for each

nutrient delivery system. This eliminated the need for a water

rinse after each addition and also allowed direct tracking of

nutrients added to each system. Preliminary tests with complete

stock solutions (with concentrations up to 18.0 dS m -I EC) showed

no detectable precipitation over seven days.

Bioloaical Test (Jan 1989 - May 1989)

For the Phase IV test, all 64 trays positions in the BPC

were planted with 'Yecora Rojo' wheat. This provided about 16 m 2

of area with the growing trays. (Note: this does not account for

gaps between trays and the tendency of shoots to lean along the

edges). Pneumatic door seals were activated as often as possible

to maintain tight atmospheric closure throughout growth. On

several occasions during the study, nutrient solution pumps and

lamps were turned off for the number 4 level because of low water

level alarms from the sump tank. The alarms always occurred

during a transition from light to dark when the chamber tempera-

ture was lowered from 20 ° to 16°C. It was later determined that

an atmospheric suction equivalent to i00 to 120 mm of water

(about 1 kPa) was occurring inside the chamber during the change

from day to night conditions. Because the nutrient solution

tanks were vented to the main chamber, pressure transducers used

to monitor the levels would incorrectly sense a 10 to 12 cm drop

in the reservoir and place the system into alarm. To circumvent
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this, a float switch and a differential pressure transducer

(vented to the chamber atmosphere) were added to the sump tank.

It is interesting to note that water condensed from the chamber

during the study exceeded the amount added to the nutrient solu-

tion tanks (Table 2). This was likely a result of residual water

in the air handling system from supplementary humidification

during the first 2 weeks of plant growth.

Using the CO 2 rise during the dark and the subsequent draw-

down when the lamps turned on each day, a complete set of stand

gas exchange data was gathered. A detailed report of this is in

preparation (Wheeler and Sager, In Press). The results showed

that: i) stand photosynthesis peaked near 25 days after planting

and then gradually declined with age; 2) photosynthesis increased

linearly with irradiance (750 umol m -2 s-I PPF maximum tested)

with a light compensation point near 200 umol m -2 s-l; 3)

photosynthesis decreased sharply when CO 2 dropped below ap-

proximately 700 ppm and did not increase much above 1000 ppm; 4)

dark period respiration was nearly 75% greater at 24°C compared

to 16°C; and 5) after reaching full vegetative ground cover,

water transpiration rate remained relatively constant throughout

growth.

Despite the encouraging gas exchange data, final harvest

results were disappointing with regard to potential yields

(Bugbee and Salisbury, 1988). Total biomass averaged only 55% of

reported optimal yields (65% for the four best trays) for an ir-

radiance of 38 mol m-2 day -1 (530 umol m-2 s -1 for 20 h/day).

Harvest index averaged 29% (31% for the 4 best trays) in com-

parison to a more typical ratio of 45% obtained in studies at
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Utah State (Bugbee and Salisbury, 1988; Salisbury and Bugbee,

1988). This would suggest that the problems were related to poor

seed set. Nutrient solution and tissue analyses showed that cop-

per levels were low, and copper deficiencies are known to reduce

seed set (Marschner, 1986). Discussion of tissue analysis

results with Dr. Wade Berry of UCLA showed no other serious

deficiencies and no toxicities. Nitrogen levels were not

analyzed, but subsequent tests under similar conditions comparing

growth at 7.5 mM (used in the BPC) with 15.0 mM showed no obvious

improvements (C.L. Mackowiak, unpublished).

In conjunction with the poor yields, for the first time in

any BPC test, flag leaves of the wheat plants showed an epinastic

rolling along the longitudinal axis. This symptom recurred along

with poor seed set during the Phase V test and both are discussed

further below.

PHASE V (May 1989 - Nov 1989)

Physical Svste_

With the exception of nutrient solution temperature and sup-

pression of CO 2 buildup, full environmental control was available

for Phase V testing (Table 1). However, a temporary failure of

the hot water pump for the lower air handling system caused poor

temperature control during the dark period for the first 10 days

of biological test. During this time, the lower chamber tended

to overshoot the desired night temperature set point of 16°C, of-

ten reaching 13 ° or 12°C for approximately one hour immediately

after the lamps were turned off. In an attempt to increase Jr-

radiance at the tray level, white, ABS plastic reflector panels

were suspended just beneath the lamp canopy at the ends of each
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growing level. This raised tray-level PPF by 10-15% for the end

positions, and approximately 5% for the second position in from

the ends. Use of water to seal the air handling fan shafts was

discontinued for Phase V. Instead, the space between the fan

housing and the first support bearing (pillow block) was capped

with RTV sealant. Carbon dioxide concentration decay tests con-

ducted prior to the biological test showed that leakage rates

were less than 10% of the chamber volume per day (less than 0.5%

per hour), and tests conducted after the biological test showed

leakage rates of less than 5% day with the chamber internal pres-

sure maintained near atmospheric (less than 0.2% per hour). Mass

flow meters and signal integrators to monitor the amount of CO 2

added to the chamber were calibrated and brought on-line.

_ioloaical Test (May 1989 - Aug 1989)

To increase germination uniformity, 5-cm wide strips of

hydrophyllic Nytex plastic were placed in seed holding slots of

each tray insert (Prince and Knott, 1989; Mackowiak et al.,

1990). Based on nutrient solution and tissue analyses from the

Phase IV test, copper and zinc levels were raised from 0.13 to

0.52 uM and 0.32 to 0.64 uM, respectively, in solution to avoid

nutrient deficiency problems.

Throughout the Phase V biological test, door seals were kept

continuously inflated except to enter the chamber for maintenance

or measurements near the plant canopy. This allowed accurate

monitoring of CO 2 and water exchange throughout the entire study,

and a detailed report of the gas exchange results is currently in

draft. Briefly, the results showed peak CO 2 uptake
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(photosynthesis) by the stand occurred around 20 to 25 days after

planting. This was followed by a gradual decline as the stand

matured. Dark period respiration also peaked near 20 to 25 days.

As in the previous test, stand photosynthesis increased in a

linear fashion with PPF (750 umol m -2 s -I the highest level

tested), with a compensation point near 220 umol m-2 s -1 (Corey,

1989). Stand photosynthesis appeared to be uniform across the

light period, showing no diurnal trends. Cross-checks of

photosynthetic calculations using closed system CO 2 drawdowns

against semi-closed, CO 2 mass flow meausurements (see Coombs et

al., 1985) showed close agreement (Corey, 1989). Water

transpired by the stand peaked near 25 days and remained nearly

constant for the remainder of growth.

In addition to CO 2 and water, atmospheric samples were taken

daily and analyzed using gas chromatography (photoionization

detector--PID) for light hydrocarbons. Results showed that

ethylene gas increased from about I0 ppb at the beginning of the

study to about 120 ppb circa day 30 (B. Vieux, unpublished).

This was followed by a gradual decline back to a less than 10 ppb

at 70 days.

During the time of flag leaf expansion and head emergence

(days 30 through 40), flag leaves began to show a pronounced

epinastic rolling along the longitudinal axis, somewhat resem-

bling a "soda straw". Despite this rolling, the leaves were

transpiring rapidly (as measured with a steady-state porometer)

and stand photosynthesis seemed unaffected. Several leaves were

excised and removed from the chamber for extraction of intercel-

lular gas and analysis using gas chromatography (Beyer and Mor-
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gan, 1970). Although tests were variable, tissue ethylene levels

were as high as 400 ppb. On day 38, four trays were removed from

the chamber and placed in a growth chamber under similar condi-

tions (except fluorescent radiation at 300 umol m -2 s-1 instead

of HPS radiation at 600 umol m -2 s -1) but a low ethylene (<10

ppb) environment for 5 days. Repeating tissue gas extractions

after 5 days in this environment showed that tissue ethylene

levels had dropped to less than 100 ppb, but flag leaves remained

rolled.

As with the Phase IV test, growth was again disappointing.

After 85 days, a total of 44.24 kg of biomass was produced, or

32.5 g m -2 day-l--only 56% of optimal yields (Bugbee and Salis-

bury, 1988). As before, seed set was low, with an average har-

vest index of 30%. Interestingly, total biomass from the fourth

level averaged 38.2 g m -2 day -1, about 66% of optimal yield and

17% better than the chamber average (Table 2). Throughout

growth, plants on the fourth level appeared generally healthier

and more robust than plants in the rest of the chamber. Leaves

of plants on the other levels, particularly levels 1 and 2,

showed numerous chlorotic flecks and more leaf tip burn. Other

than the cooler temperatures early in development, no obvious en-

vironmental differences existed between the fourth level and the

rest of the chamber. In addition, the leaf rolling symptoms were

as prevalent on plants of fourth level as in the rest of the

chamber. Thus the cool temperatures early in development may

have had some favorable influence on development. Follow-up

studies comparing cultural techniques are currently underway to

study this problem further.
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SUMMARY

The Biomass Production Chamber at Kennedy Space Center was

constructed to conduct large-scale plant growth studies for

NASA's CELSS program. Over the past four years (1985-1989),

physical systems and computer control software have been con-

tinually upgraded and the degree of atmospheric leakage from the

chamber has decreased from about 40% to near a 5% (total volume

per day). Only within the past year (1989) have nearly all of

the originally desired control capabilities been implemented.

During the chamber development, five separate biological tests

were conducted using wheat, one of the primary candidate crops.

Early tests conducted with a limited degree of atmospheric

closure showed that total crop growth from the best trays was

within 80% of reported optimal for similar level of photosyn-

thetically active radiation. Yields from subsequent tests under

more tightly closed conditions have not been as good--up to only

65% of optimal yields for the best trays. Yields appear to have

decreased with increasing atmospheric closure, yet potential

problems exist in cultural techniques and further studies are

warranted. With the ability to tightly seal the chamber, quan-

titative data have been gathered on CO 2 and water exchange rates.

Results showed that wheat stand photosynthesis reached a peak

near 25 days after planting, soon after full vegetative ground

cover was established, and then gradually decreased with

maturity. Stand photosynthesis increased linearly with increas-

ing PPF (750 umol m -2 s-I maximum tested) with a light compensa-

tion point near 200 umol m -2 s-I. Stand photosynthetic rates did

not increase much as CO 2 levels were raised beyond I000 ppm, but
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dropped sharply when CO 2 levels fell below approximately 700 ppm.

Dark period respiration of the stands could be increased markedly

if temperatures were increased from 16 ° to 24°C. Water

transpiration from the wheat stands appeared to reach a maximum

soon after full vegetative ground cover and remained nearly con-

stant until near senescence. In the final phase of testing when

atmospheric closure was the highest, ethylene gas levels in the

chamber atmosphere rose from about I0 ppb to nearly 120 ppb

during middle growth after which concentrations decreased to near

10 ppb. Evidence suggests that the ethylene originated from the

wheat plants themselves and may have caused an epinastic rolling

of the leaves, but no apparent detrimental effects on whole plant

function.

The Biomass Production Chamber has been steadily improved

both in the scope and precision of control system capabilities.

The information on productivity, water cycling, nutrient balance,

and microbiological enumeration and identification are unique

physiological and ecological data sets. The reduction in yield

with increasing closure raises interesting and critical areas for

further studies. Program support has not kept pace with the

scheduled development of the BPC and specific instrumentation and

operation requirements of the biomass production tests have not

been met due to the lack of resources. It is our hope that fu-

ture resources will allow total utilization of this facility,

which should continue to serve as an invaluable tool for the

CELSS program.
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